Home About us Editorial board Ahead of print Current issue Archives Submit article Guidelines Contacts Login 
ISSN: Print -2349-0977, Online - 2349-4387

 Table of Contents  
Year : 2017  |  Volume : 3  |  Issue : 4  |  Page : 224-227

Coexistence of anaplastic astrocytoma and arteriovenous malformation

1 Department of Neurosurgery, VPS Lakeshore Hospital, Ernakulam, Kerala, India
2 Department of Pathology, VPS Lakeshore Hospital, Ernakulam, Kerala, India
3 Department of Rheumatology and Internal Medicine, VPS Lakeshore Hospital, Ernakulam, Kerala, India

Date of Web Publication7-Jul-2017

Correspondence Address:
Muhammed Jasim Abdul Jalal
Department of Rheumatology and Internal Medicine, VPS Lakeshore Hospital, Nettoor P.O. Maradu, NH 47 - Byepass, Ernakulam, Kerala
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/astrocyte.astrocyte_12_17

Rights and Permissions

Coexistence of astrocytoma with cerebral vascular malformations is unusual, especially if both lesions occur separately. Preoperative angiogram will help us to identify any coexisting arteriovenous malformation (AVM). This will in turn change the treatment strategy for astrocytoma. Preoperative embolization for AVM may be done prior to the glioma excision. There is increased risk of bleeding if AVMs are not preoperatively diagnosed. AVMs coexisting with astrocytomas are rare. We report a case of anaplastic astrocytoma coexisting with an acquired AVM.

Keywords: Acquired AVM, anaplastic astrocytoma, arteriovenous malformations (AVM), de novo AVM, vascular endothelial growth factor

How to cite this article:
Oommen A, Govindan J, Jalal MJ. Coexistence of anaplastic astrocytoma and arteriovenous malformation. Astrocyte 2017;3:224-7

How to cite this URL:
Oommen A, Govindan J, Jalal MJ. Coexistence of anaplastic astrocytoma and arteriovenous malformation. Astrocyte [serial online] 2017 [cited 2023 Dec 6];3:224-7. Available from: http://www.astrocyte.in/text.asp?2017/3/4/224/209924

  Introduction Top

Arteriovenous malformation (AVM) is a vascular malformation characterized by arteriovenous shunt through a collection of tortuous vessels without an intervening capillary bed. The most common clinical presentation of AVM is headache and seizures. About 15% can be asymptomatic. More than 50% of AVMs present with intracranial hemorrhages. This contributes to about 2% of all hemorrhagic strokes each year. AVM can be treated either by endovascular embolization, neurosurgery, or radiation therapy.[1]

The exact causes of AVMs are still unclear. Apart from congenital AVMs, there are theories suggesting various dynamic developmental processes promoting the existence of acquired AVMs. Vascular endothelial growth factors (VEGFs) and transforming growth factors (TGFs) play a crucial role in the angiogenesis leading to the development of AVMs, thus challenging the theory of congenital occurrence of all cerebral AVMs.[2]

Anaplastic astrocytomas are World Health Organization (WHO) grade III gliomas. Anaplastic astrocytomas and glioblastoma are estimated to affect 5–8 people per 100,000 in the general population.[3] Anaplastic astrocytomas are more common in adults than children. In adults, anaplastic astrocytomas commonly develop between 30 and 50 years.[3]

Grossly anaplastic astrocytomas are ill-defined with blurred margins. They may have spongy or gelatinous appearance, with microcysts and calcifications. They may have a clearer distinction from surrounding brain structures than low-grade diffuse astrocytomas. Microscopically, they are similar to grade II tumors but more cellular, more atypia, and mitoses are seen. By definition, vascular proliferation and necrosis are absent.

Coexistence of astrocytoma with cerebral vascular malformations is unusual, especially if both such lesions occur as separate part in the brain.[4] Rare coincidences are reported involving mostly gliomas and meningiomas.

  Case Report Top

A 45-year-old male presented with headache and blurring of vision in the right eye of 2 weeks duration. The patient did not have any episodes of seizures, double vision, or loss of consciousness. There was no significant past illness. He was conscious and oriented with a Glasgow Coma Scale of 15/15 [E4V5M6]. He had nominal aphasia. The pupils were equal and reactive to light. There were no gross motor deficits except for a right-sided pronator drift. All the deep tendon reflexes were normal. The plantar responses were flexor bilaterally. He did not have any cerebellar/meningeal signs. Systemic examinations were normal.

Ophthalmological evaluation showed visual acuity of 6/12 in both eyes. Eye movements were equal in all directions. There was no nystagmus. He had normal color vision. Visual field evaluation showed marked deterioration of peripheral field. Fundus examination was normal under mydriasis with short-acting mydriatics.


Magnetic resonance imaging (MRI) brain axial T2, fluid attenuated inversion recovery (FLAIR), susceptibility weighted imaging (SWI), diffusion weighted imaging (DWI) coronal FLAIR, and sagittal T1W; dynamic MR perfusion imaging; postcontrast axial and coronal T1FS, sag three-dimensional MPRAGE, and multivoxel MR spectroscopy were performed.

A large 7.1 × 6.0 × 5.3 cm 3 (AP × Transverse × CC) necrotic, nondiffusion restricting, left temporoparietal mass with thick irregular enhancing ring was seen. Dynamic MR perfusion study showed elevated cerebral blood volume (CBV) in the periphery with relative CBV (rCBV) up to 16.3. Multivoxel MR spectroscopy showed elevated choline and reduced N-acetyl aspartate (NAA) in the solid tumor component. Central necrotic core showed elevated lipid/lactate peak. There was mild elevation of choline and reduction in NAA in peritumoral white matter. Intralesional foci of hemorrhage were seen demonstrating susceptibility on SW images in tumor rim [Figure 1].
Figure 1: MRI brain showing a large necrotic, nondiffusion restricting, left temporoparietal mass with thick irregular enhancing ring, perilesional edema and mass effect. (a) T1-weighted sequence; (b) T2-weighted sequence; (c) T1 contrast sequence; (d) DWI sequence; (e) DWI—ADC (apparent diffusion coefficient) sequence; (f) Dynamic MR perfusion study showing elevated rCBV

Click here to view

There was perilesional edema in the left temporoparietal and peritrigonal deep white matter, posterior limb of left internal capsule, and left thalamus. Body and trigone of left ventricle were compressed and effaced. There was also compression and contralateral displacement of left thalamus, third ventricle, and midbrain with midline shift by 1.1 cm. Ipsilateral ambient cistern was widened. There was mild dilatation of left temporal horn. The imaging features were suggestive of a high-grade glioma.


In view of his symptoms, a left temporoparietal craniotomy and near total excision of the space occupying lesion was done under general anesthesia. Dura was opened. Brain was tense. 60 ml of serosanguineous fluid was aspirated using brain cannula from the central necrotic material. Brain was lax following aspiration. Near total excision of a highly vascular peripheral growth was done.

Intraoperatively, there was evidence of multiple abnormal small blood vessels throughout the tumor. There was no evidence of any nidus suggestive of AVM. There were no obvious feeding vessels or draining veins. The bleeding stopped after total excision of tumor.


Hematoxylin and eosin section showed many cavernous vascular spaces with endothelium and dysplastic thick and thin-walled vessels containing fibrinous material. Abutting on the walls of these vascular spaces were lobules of a cellular neoplasm, composed of morphologic and glial fibrillary acidic protein positive, pleomorphic astrocytes, showing mitotic figures and ki67 index of 30–40%. No features of microvascular proliferation and geographic necrosis were seen. VEGF staining showed positivity in the multinucleated giant cells in the vessels and macrophages in between the tumor cells. The morphology with immunohistochemistry features were compatible with an anaplastic astrocytoma (WHO grade III) with coexistent cavernous/venous type of vascular malformation, probably acquired [Figure 2].
Figure 2: Hematoxylin and eosin section showing many cavernous vascular spaces with endothelium and dysplastic thick and thin-walled vessels containing fibrinous material with lobules of a cellular neoplasm abutting on the walls of these vascular spaces. (a) Anaplastic area; (b) Vessels; (c) Vein.

Click here to view


Following the operation, the patient was symptomatically better without any focal neurological deficits.

  Discussion Top

Anaplastic astrocytomas are WHO grade III astrocytic tumors. Their usual site is supratentorial, but can be anywhere in central nervous system. Preferred sites are frontal and temporal lobes, brain stem, and spinal cord. They are uncommon in cerebellum. Neuroimaging shows heterogeneous or patchy enhancement. Grossly anaplastic astrocytomas are ill-defined with blurred margins. They may have spongy or gelatinous appearance, microcysts, and calcification. They may have clearer distinction from surrounding brain structures than low-grade diffuse astrocytomas. Microscopically, they are similar to grade II tumors but more cellular, more atypia, and mitoses are seen. By definition, vascular proliferation and necrosis are absent. They have better clinical response to treatment than glioblastoma.

Vascular malformations consisting of abnormal arteries and veins are usually congenital. They can occur at any age, but most often between 20 and 40 years of age. Clinical symptoms of AVM depend on its location. Most frequently, AVM presents with headaches and seizures, but can be asymptomatic as well (15%). More than 50% of AVMs present with intracranial hemorrhages that account for about 2% of all hemorrhagic strokes each year.[5] The specific treatment for AVM may involve endovascular embolization, neurosurgery, or radiation therapy.[6] The most commonly used grading scale to predict the surgical risk during obliteration is the system described by Spetzler and Martin.[7]

The association between vascular malformation and cerebral gliomas is unusual. The lesions consisting of mixed tumors of glial and vascular origin, particularly of cavernous or arteriovenous type, have been often defined as angiogliomas.[8]

The term “angioglioma” is confusing and according to some authors should not be used to determine the true coincidence of vascular and neoplastic glial lesions. Usually, angiogliomas are low-grade gliomas and have good prognosis. These are different from the AVMs coexisting with astrocytomas separately. The pathogenetic suggestions consider such angiogliomatic lesions as a result of reactive astroglial neoplastic proliferation secondary to a preexisting vascular malformation and/or hemorrhages. Microscopically, the hemosiderin-laden macrophages and reactive gliosis could be observed in the vicinity of the lesion. It is important not to confuse such angiogliomatic lesion with high-grade gliomas displaying malignant neovascularity.

The pathogenesis of AVMs remains ill-defined. It is a widespread belief that AVMs are congenital.[9] The symptomatic presentation of AVMs in adults before the age of 40, in addition to the de novo AVMs reported in children, supports the concept of the temporal vulnerability of vascular elements to a physiologic or environmental trigger.[10] Mechanical, inflammatory, thrombogenic, ischemic/hypoxic, or hormonal triggers generally lead to hemodynamic stress.[11] Disturbances of the venous drainage system may contribute to the formation of cerebral AVMs. Venous stenosis, occlusion, or agenesis during embryology or chronic venous hypertension during childhood and adulthood can result in tissue hypoxia and result in the formation of AVM.[12] However, the role of venous hypertension in the growth of an AVM remains indeterminate. Other vascular lesions such as dural or pialarteriovenous fistula in the brain and spine can develop after trauma, infection, or inflammation. This further supports the environmental influences stimulating angiogenesis. Many of these injuries result in the release or increased expression of TGF and VEGF, which play important roles in angiogenesis. The overstimulation of angiogenesis due to these stressors leads to vascular remodeling and other changes resulting in the maturation of AVMs.[2] Thus AVMs can be congenital or acquired. When acquired, the angiogenesis is predominantly by the growth factors—VEGF and TGF.

Upregulation of VEGF and its receptors has been demonstrated in all gliomas.[13] Astrocytomas are the most common glial tumors. They are subdivided on the basis of how undifferentiated the tissue appears microscopically. Grade I tumors bear the closest resemblance to normal brain. Grade IV tumors are the most undifferentiated. Low-grade astrocytomas progress more slowly than their high-grade counterparts whose growth can be explosive. Grade IV astrocytoma is also known as glioblastoma, one of the deadliest of all malignant tumors.

While multiple growth factors are potentially operative in glioma angiogenesis, only VEGF is known to induce vascular permeability. Angiogenesis increases markedly from the low-grade tumors (grades I and II) to the high-grade lesions (grades III and IV). VEGF and its receptors are upregulated in most, but not all, astrocytomas.[14] Low-grade astrocytomas which produce VEGF have the same prognosis as high-grade lesions.[15] Aberrant VEGF production plays a significant role in the pathophysiology of glioma progression. VEGF is produced in at least four isoforms. Three isoforms—VEGF121, VEGF165, and VEGF189—have been demonstrated in glioblastoma.[16]

In 1991, Lombardi et al.[17] did a histological review of 1034 surgically resected AVMs, both angiographically occult and visible. They concluded that oligodendrogliomas with AVM-like vasculature appear to be angiographically occult in contrast to AVMs, most of which were angiographically obvious and showed arteriovenous shunting. Therefore, histopathologic and angiographic criteria is a must to definitively split apart from the coexistence of a true AVM and blood vessel-related tumor.

It was in 1965, when Raynor and Kingman [18] described an AVM associated with hemangioblastoma in a 19-year-old male. In 1975, Crowell et al.[19] described an angiographically evident AVM in the right temporal lobe of a 17-year-old male, which was histopathologically negative.

In 1979, Zuccarello et al.[20] described the simultaneous occurrence of malignant astrocytoma (without WHO grade) and an angiographically evident AVM in the left temporal lobe of a 50-year-old male. In 1986, Martinez-lage et al.[21] described a right intraventricular oligodendroglioma coexisting with a right parietal cortical AVM in a 43-year-old male who presented with subarachnoid hemorrhage. The hemorrhage was believed to be caused by the tumor, rather than the AVM.

In 1991, Heffner et al.[22] angiographically documented AVM in the meninges overlying the right frontal benign astrocytoma (WHO grade II) in a 17-year-old male.

Furthermore, in 2000 and 2003, the coexistence of AVM and astrocytoma was reinforced by Harris et al. and Kupnicka et al., respectively.[23],[24] In 2008, McKinney et al.[25] described an anaplastic oligodendroglioma in a 55-year-old female with a previously unremarkable brain imaging. She had a coexisting arteriovenous lesion, which was later on explained as a de novo occurrence.

AVMs coexisting with gliomas could be identified with preoperative angiogram. These AVMs should undergo preoperative embolization prior to tumor excision. In our case, we did not have any suspicion of AVM radiologically and hence preoperative angiogram was not done.

  Conclusion Top

Anaplastic astrocytomas are highly vascular tumors. These tumors release TGF and VEGF, which can play an important role in angiogenesis and trigger the development of acquired AVMs. Even though acquired AVMs are rare, increasing reports of de novo AVMs challenges the theory of congenital AVM. Preoperative angiogram and embolization plays an important role in the management of acquired AVMs secondary to vascular tumors.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Laakso A, Dashti R, Juvela S, Niemelä M, Hernesniemi J. Natural history of arteriovenous malformations: Presentation, risk of hemorrhage and mortality. Acta Neurochir Suppl 2010;107:65-9.  Back to cited text no. 1
Sure U, Butz N, Schlegel J, Siegel AM, Wakat JP, Mennel HD, et al. Endothelial proliferation, neoangiogenesis, and potential de novo generation of cerebrovascular malformations. J Neurosurg 2001;94:972-7.  Back to cited text no. 2
Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: A clinical review. JAMA 2013;310:1842-50.  Back to cited text no. 3
Soltanolkotabi M, Schoeneman SE, Dipatri AJ, Hurley MC, Ansari SA, Rajaram V, et al. Juvenile pilocytic astrocytoma in association with arteriovenous malformation. Interv Neuroradiol 2012;18:140-7.  Back to cited text no. 4
Nagaåska E, Matyja E, Pucko E, Zạ bek M. The coexistence of pleomorphic xanthoastrocytoma and arteriovenous malformation. A case report. Folia Neuropathol 2013;51:269-74.  Back to cited text no. 5
Bradac O, Charvat F, Benes V. Treatment for brain arteriovenous malformation in the 1998-2011 period and review of the literature. Acta Neurochir (Wien) 2013;155:199-209.  Back to cited text no. 6
Rodriguez-Hernandez A, Kim H, Pourmohamad T, Young WL, Lawton MT, University of California SFAMSP. Cerebellar arteriovenous malformations: Anatomic subtypes, surgical results, and increased predictive accuracy of the supplementary grading system. Neurosurgery 2012;71:1111-24.  Back to cited text no. 7
Gazzeri R, De Bonis C, Carotenuto V, Catapano D, d'Angelo V, Galarza M. Association between cavernous angioma and cerebral glioma. Report of two cases and literature review of so-called angiogliomas. Neurocirugia (Astur) 2011;22:562-6.  Back to cited text no. 8
Neil JA, Li D, Stiefel MF, Hu YC. Symptomatic de novo arteriovenous malformation in an adult: Case report and review of the literature. Surg Neurol Int 2014;5:148.  Back to cited text no. 9
[PUBMED]  [Full text]  
Stevens J, Leach JL, Abruzzo T, Jones BV. De novo cerebral arteriovenous malformation: Case report and literature review. AJNR Am J Neuroradiol 2009;30:111-2.  Back to cited text no. 10
Bulsara KR, Alexander MJ, Villavicencio AT, Graffagnino C. De novo cerebral arteriovenous malformation: Case report. Neurosurgery 2002;50:1137-40.  Back to cited text no. 11
Pietila TA, Zabramski JM, Thellier-Janko A, Duveneck K, Bichard WD, Brock M, et al. Animal model for cerebral arteriovenous malformation. Acta Neurochir (Wien) 2000;142:1231-40.  Back to cited text no. 12
Pietsch T, Valter MM, Wolf HK, et al. Expression and distribution of vascular endothelial growth factor protein in human brain tumors. Acta Neuropathol 1997;93:109-17.  Back to cited text no. 13
Berkman RA, Merrill MJ, Reinhold WC, Monacci WT, Saxena A, Ali IU, et al. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 1993;91:153-9.  Back to cited text no. 14
Yao Y, Kubota T, Sato K, et al. Prognostic value of vascular endothelial growth factor and its receptors flt-1 and flk-1 in astrocytic tumors. Acta Neurochir (Wien) 2001;143:159-66.  Back to cited text no. 15
Machein MR, Kullmer J, Fiebich BL, Plate KH, Warnke PC. Vascular endothelial growth factor expression, vascular volume, and capillary permeability in human brain tumors. Neurosurgery 1999;44:732-40.  Back to cited text no. 16
Lombardi D, Scheithauer BW, Piepgras D, Meyer FB, Forbes GS. Angioglioma and the arteriovenous malformation-glioma association. J Neurosurg 1991;75:589-96.  Back to cited text no. 17
Raynor RB, Kingman AF. Hemangioblastoma and vascular malformations as one lesion. Arch Neurol 1965;12:39-48.  Back to cited text no. 18
Crowell RM, DeGirolami U, Sweet WH. Arteriovenous malformation and oligodendroglioma. Case report. J Neurosurg 1975;43:108-11.  Back to cited text no. 19
Zuccarello M, Giordano R, Scanarini M, Mingrino S. Malignant astrocytoma associated with arteriovenous malformation. Case report. Acta Neurochir 1979;50:305-9.  Back to cited text no. 20
Martinez-Lage JF, Poza M, Esteban JA, Sola J. Subarachnoid hemorrhage in the presence of a cerebral arteriovenous malformation and an intraventricular oligodendroglioma: Case report. Neurosurgery 1986;19:125-8.  Back to cited text no. 21
Heffner RR, Porro RS, Deck MD. Benign astrocytoma associated with arteriovenous malformation. J Neurosurg 1991;35:229-33.  Back to cited text no. 22
Harris OA, Chang SD, Harris BT, Adler JR. Acquired cerebral arteriovenous malformation induced by an anaplastic astrocytoma: An interesting case. Neurol Res 2000;22:473-7.  Back to cited text no. 23
Kupnicka DJ, Sikorska B, Klimek A, Kordek R, Liberski PP. Angioganglioglioma: A transitional form between angioglioma and ganglioglioma? Ultrastruct Pathol 2003;27:423-32.  Back to cited text no. 24
McKinney JS, Steineke T, Nochlin D, Brisman JL. De novo formation of large arteriovenous shunting and a vascular nidus mimicking an arteriovenous malformation within an anaplastic oligodendroglioma: Treatment with embolization and resection. J Neurosurg 2008;109:1098-102.  Back to cited text no. 25


  [Figure 1], [Figure 2]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
Case Report
Article Figures

 Article Access Statistics
    PDF Downloaded281    
    Comments [Add]    

Recommend this journal